
TRICKING BROWSERS
AND HIDING ST YLES
It’s a crying shame that CSS, designed to be so simple and
approachable to nonprogrammers, has turned into such a
cabalist’s affair!

—TODD FAHRNER

ALTHOUGH SOME FEEL THE BROWSER WARS are behind us, their

sad legacy persists. Every time an author has to code a workaround

to make Navigator 4.x happy, every time a Web page comes up

differently in different browsers, an echo of the wars lives on.

Fortunately, there are ways to take advantage of these same

browser f laws to make our lives a little easier. It might not seem

like much, but we need to take our victories where we can.

Although these tricks probably seem like a lot of effort just to cater

to browser bugs, they’re less trouble than setting up JavaScript

sniffers to serve up different style sheets to different browsers, let

alone writing the separate style sheets that such an approach would

require. If you can get away with ignoring old, f lawed browsers,

then more power to you! Write to the standards and sleep well at

night. But if, like most of us, you have to worry about what your

site will look like in every browser out there, one or more of these

tricks might be just the thing.

2

Turning Browser Flaws to Our Advantage
This looks at four ways to hide CSS from certain browsers. Three of these

methods are ways to hide entire style sheets from buggy browsers, but one

allows authors to hide parts of a single rule. Best of all, these methods are all

perfectly valid CSS and don’t require any form of scripting to carry out. I think

of them as “CSS aikido.”

Using @import Restrictions
If you’ve ever struggled with Netscape Navigator 4.x, this trick is for you. It all

hinges on the fact that NN4.x doesn’t understand what @import means. This is

by far the most widely used trick, even though it’s only good for hiding external

style sheets.

Consider the following style sheet:

<style type=”text/css”>
h1 {border-bottom: 2px solid gray; margin-bottom: 0.25em;}
a:link, a:visited {padding: 1px 0.5em; background: #FF9;

font-weight: bold;}
a:link {color: blue;}
a:visited {color: purple;}
a:hover {color: red; background: yellow;}
a:active {color: yellow; background: red;}
</style>

A few things here will cause trouble or otherwise be useless in NN4.x. Most

obviously, NN4.x doesn’t understand a:hover rules because it was released

before :hover made its way into the CSS specification. It also has trouble with

:active. These aren’t necessarily major problems because NN4.x will pretty

much ignore these rules. There is a much bigger problem, unfortunately: The

application of padding to hyperlinks.

For some reason, NN4.x seems to assume that any element that’s been given

padding (or borders or margins) must be a block-level element. Thus, the styles

set up here will cause hyperlinks to break up whatever element they’re found

within and possibly overlap other pieces of the document. So you definitely

can’t have NN4.x seeing the padding declaration in your CSS.

Here’s the solution: Take the Navigator-unfriendly styles and move them into

a separate file (call it adv-styles.css, for example). That would give you:

a:link, a:visited {padding: 1px 0.5em;}
a:hover {color: red; background: yellow;}
a:active {color: yellow; background: red;}

Old Explorers
@import is also not

understood by IE3/Win
and IE4/Win, if that’s

a concern for you.

This leaves you with a somewhat pared-down style sheet:

<style type=”text/css”>
h1 {border-bottom: 2px solid gray; margin-bottom: 0.25em;}
a:link, a:visited {background: #FF9; font-weight: bold;}
a:link {color: blue;}
a:visited {color: purple;}
</style>

Now all you have to do is import the styles you just removed.

<style type=”text/css”>
@import url(http://www.example.org/styles/adv-style.css);
h1 {border-bottom: 2px solid gray; margin-bottom: 0.25em;}
a:link, a:visited {background: #FF9; font-weight: bold;}
a:link {color: blue;}
a:visited {color: purple;}
</style>

As far is NN4.x is concerned, the @import line might as well not be there, so it

will never see the styles contained in the imported style sheet. Pretty much any

other browser will import and use those styles, so they get the benefit of the

more advanced CSS.

A variation on this trick is to make all of the styles external and then use the link

element to bring in the Navigator-friendly styles. (Even though NN4.x doesn’t

understand @import, it does understand link.)

<link rel=”stylesheet” type=”text/css” href=”basic-styles.css”>
<style type=”text/css”>
@import url(adv-styles.css);
</style>

This works in concert with the style sheets shown in Listings 1 and 2.

L i s t i n g 1 The Content s of basic-styles.css
h1 {border-bottom: 2px solid gray; margin-bottom: 0.25em;}
a:link, a:visited {background: #FF9; font-weight: bold;}
a:link {color: blue;}
a:visited {color: purple;}

L i s t i n g 2 The Content s of adv-styles.css
a:link, a:visited {padding: 1px 0.5em;}
a:hover {color: red; background: yellow;}
a:active {color: yellow; background: red;}

3

Which One Is
Better?
Although both approaches
are worthwhile, it’s usually
easier to use the
link/@import method
instead of putting an
@import into an embedded
style sheet. The
link/@import trick has
gained a fair amount of
popularity on the Web, so
it’s well understood and
there are plenty of people
who can help out if any
trouble arises.

4

Media Attributes
It’s also possible to hide linked and embedded style sheets from Navigator 4.x

simply by making the styles available in all media. For example:

<link rel=”stylesheet” type=”text/css” href=”advanced-styles.css”
media=”all”>

<style type=”text/css” media=”all”>
h1 {border-bottom: 2px solid gray; margin-bottom: 0.25em;}
a:link, a:visited {background: #FF9; font-weight: bold;}
a:link {color: blue;}
a:visited {color: purple;}
</style>

Both the link element and the entire embedded style sheet will be ignored by

NN4.x because it doesn’t understand any value other than screen. You can also

fool NN4.x by using combinations of media:

<link rel=”stylesheet” type=”text/css” href=”advanced-styles.css”
media=”screen, print”>

<style type=”text/css” media=”screen, projection”>
h1 {border-bottom: 2px solid gray; margin-bottom: 0.25em;}
a:link, a:visited {background: #FF9; font-weight: bold;}
a:link {color: blue;}
a:visited {color: purple;}
</style>

Any style sheet (or link) you mark as applying only to screen media will be seen

and used by NN4.x, so you might have to use other tricks (such as @import) to

hide advanced styles from NN4.x.

The Highpass Filter
With this trick, we move out of the relatively straightforward tricks we’ve been

examining and into some seriously deep work. At first blush, this trick (and the

next one) look like gross hacks—and in a sense they are—but they’re also fully

valid CSS and an elegant approach to the subject of hiding styles from browsers.

Because of their clever use of obscure bugs in CSS parsers, I sometimes refer to

them as “parsermancy.”

Let’s just look at the code involved and then work out what’s happening.

@import “null?\”\{“;
@import “adv-styles.css”;

The second line looks normal enough, but the first one is seriously warped. You

might be wondering who let the cat walk on the keyboard or if CSS is starting to

become Perl, but neither is the case.

Media-value Pitfalls
This trick only works on
NN4.x, and it has been

reported occasionally that,
in rare cases, it can crash
NN4.x on some machines.

Credit Where
It’s Due

Both the highpass filter
and the voice-family trick
(see the next section) were
developed and published by

Tantek Çelik, and they are
included here with his kind

permission. You can find
these and more by visiting
http://www.tantek.com/

and clicking on
“CSS Examples.”

This trick relies on the poor CSS parsing that is present in older browsers,

primarily the Internet Explorer for Windows line up through IE5.x. Due to bugs

in their CSS parsing engines, IE3.x through IE5.x think the preceding code is:

@import null?\
{ “;@import” adv-styles . css “;

Neither line leads to any useful results, so the effect is to hide the external style

sheet adv-styles.css from these browsers.

In browsers with properly written CSS parsers, the rules are resolved like this:

@import “null?”{“;
@import “adv-styles.css”;

The first line is harmlessly parsed and handled. Because it points to nothing, it

has no effect on the styling of the document. The second line is a normal

@import, so the style sheet to which it points will be applied to the document.

Listings 3 and 4 show simple test documents you can use to see if a given brows-

er can handle the code properly or if its parser has f laws. Make sure the files are

in the same directory when you test. If the text is styled as described, the brows-

er passes the test; otherwise, it fails.

L i s t i n g 3 A Basic Te st Document
<html><head><title>High Pass Filter Test</title>
<style type=”text/css”>
@import “null?\”\{“;
@import “filtertest.css”;
</style>
</head>
<body>
<p id=”test”>This text should be green and boldfaced
with a yellow background.</p>

</body>
</html>

L i s t i n g 4 The Content s of filtertest.css
p#test {color: green; font-weight: bold; background: yellow;}

Among the browsers that will not be fooled by the highpass filter are IE5/Mac,

IE6/Win (when in strict mode), Opera 5, Netscape 6.x, and OmniWeb for

Macintosh.

The voice-family Hack
The second piece of parsermancy, the voice-family hack, shares some things in

common with the highpass filter trick. In fact, the highpass filter is based on the

5

6

voice-family hack. The difference is that whereas the highpass filter hides an

@import statement, the voice-family hack hides just a portion of a rule. The size

of that portion is entirely up to you.

Again, let’s see the trick in action and then delve into how it works. Listing 5

shows an entire test file.

L i s t i n g 5 Te sting the voice-family Trick
<html><head><title>voice-family trick</title>
<style type=”text/css”>
div#test {
color: red;
voice-family: “\”}\””;
voice-family:inherit;
color: green;

}
</style>
</head>
<body>
<div id=”test”>This DIV will be green in browsers that parse correctly
and red in those that don’t.</div>
</body>
</html>

Hooray, more random-looking characters! Just like the highpass filter, this trick

relies on the poor CSS parsing that is present in older browsers, primarily the

Internet Explorer for Windows line up through IE5.x. Here’s what a correctly

implemented parser sees, with a little extra whitespace for clarity:

div#test {
color: red;
voice-family: “}” ;
voice-family:inherit;
color: green;

}

That’s right, the browser is looking for a voice-family file called “}”. If such a

file existed on the user’s computer, an audio browser could use it as the voice

with which to read the page. Of course, no Web browsers are able to speak Web

pages, so this rule would have no effect. The second voice-family rule is there

to clean up after the first, just in case an audio browser reads the styles and a file

with that name exists on the users’ computer. The second rule causes the first

to be ignored even by audio browsers.

Voice/Box
This trick is better known
as the “box model hack”

because that’s what Tantek
calls it. As you’ll soon see,
however, this trick is good

for much more than helping
browsers with broken

box models, so it’s been
renamed here.

However, here’s what an older browser with a f lawed parser will see:

div#test {
color: red;
voice-family: “\”}
\””;
voice-family:inherit;
color: green;

}

In other words, as far as these f lawed browsers are concerned, the div#test rule

ends with the first voice-family declaration. The rest of the rule is split off and

effectively ignored.

You might be wondering what good this does you. Consider the differences in

element box sizing, as explained in “Picking a Rendering Mode” (which is avail-

able on this Web site) and touched on in Project 9, “Multicolumn Layout.” It’s

possible to write rules that include width values for both old and new browsers so

that consistent element sizing becomes a reality. For example, let’s say you want

your test div to be 400 pixels wide, as measured from outer-left border edge to

outer-right border edge.

div#test {
padding: 20px;
border: 5px solid gray;
width: 400px;
voice-family: “\”}\””;
voice-family:inherit;
width: 350px;

}

Browsers like Explorer 5.5, which takes width to be the distance from border

edge to border edge, will think this to be the rule for div#test:

div#test {
padding: 20px;
border: 5px solid gray;
width: 400px;
voice-family: “\”}

Properly written browsers, on the other hand, will see the entire rule as you

wrote it and will use the declaration width: 350px because it comes later in the

rule. Thus, the test div will be sized the same in both old and new browsers

despite the differences in element sizing. (The same would be true for height

declarations as well, if you want to make them.)

7

8

There is one potential stumbling block, and that’s Opera. Although Opera

follows CSS with regard to element sizing, it suffers from some of the same

parser f laws as IE5.x for Windows. Thus, it will only see the width: 400px

declaration but will still use that value for the width of the content-area of the

element. This is where the be-nice-to-Opera rule comes in:

html>body div#test {width: 350px;}

This rule uses CSS2 selectors that IE5.x (and earlier) doesn’t understand but

Opera does. Thus, Opera gets the value it needs after all. Actually, so will some

other well-written browsers, but because it’s the same value as they got from the

previous rule, there’s no harm done. The entire set of code ends up as shown in

Listing 6.

L i s t i n g 6 Working Around Various Par ser Flaws
div#test {
padding: 20px;
border: 5px solid gray;
width: 400px;
voice-family: “\”}\””;
voice-family:inherit;
width: 350px;

}
html>body div#test {width: 350px;}

Although this trick is most often used to make element sizes consistent, it could

be used for any number of purposes. One such example is based on the varying

default values for font-size. Explorer 4.x and 5.x for Windows assume the

default value for font-size to be small. Netscape 4.x and 6.x follow the CSS

specification and use the default value medium. This has led most authors to avoid

these keywords because declaring font-size: medium would actually make the

text larger than the user’s default in IE5.x for Windows!

Thanks to the voice-family hack, you can get around this inconsistency. Let’s

say you actually want the text to be one step above the default font size. That

should be large, but as previously mentioned, IE4.x/Win and IE5.x/Win think

that medium is one step above the default. Thus:

div#test {
font-size: medium;
voice-family: “\”}\””;
voice-family:inherit;
font-size: large;

}

Such an approach can deliver, for the first time in years, a more consistent font

sizing when using the font-size keywords.

Translating the
Selector

The CSS2 selector
html>body div#test is

read “any div element
with an id whose value

equals test that is a
descendant of a body ele-
ment that is a child of an
html element.” You can
get a translation of any

valid CSS selector from the
SelectORacle

(http://gallery.

theopalgroup.com/

selectoracle/).

In general, the voice-family hack can be used to hide any number of declarations

from IE4.x, IE5.x, and Opera. For example, you might want to avoid the

background-attachment bugs in these browsers.

div {
background: aqua url(bg.jpg) center no-repeat scroll;
voice-family: “\”}\””;
voice-family:inherit;
background-attachment: fixed;

}

For that matter, you could hide an entire declaration block from f lawed browsers

by starting it with the voice-family hack.

div {
voice-family: “\”}\””;
voice-family:inherit;
background: aqua url(bg.jpg) center no-repeat fixed;
color: green;

}

This would keep the particular green-on-aqua-with-background-image combi-

nation from older browsers. The advantage is that this only hides the one rule

from f lawed browsers without disrupting the rest of the style sheet.

9

